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Abstract. A new method is proposed for the analysis of the magnetic polarisability of small 
apertures of arbitrary shape. The method is based on an integral represenation for the 
reciprocal distance between two points previously obtained by the author. A general 
formula is derived for the coefficients of magnetic polarisability of small apertures. Specific 
formulae are obtained for the apertures shaped as a polygon, a triangle, a rectangle, a 
rhombus, a circular sector and a circular segment. All the formulae are checked against 
the solutions known in the literature and their accuracy is confirmed. 

1. Introduction 

Many years ago Bethe (1944) reduced the problem of diffraction by small apertures 
to an evaluation of the coefficient of electric polarisability and the tensor of magnetic 
polarisability. At the moment, closed-form expressions for these quantities are known 
for an elliptic aperture in a planar screen only. All non-elliptic shapes have been 
treated either experimentally (Cohn 1951) or numerically (Okon and Harrington 1981, 
de Smedt 1979, De Meulenaere and Van Blade1 1977); the variational approach was 
used by Fikhmanas and Fridberg (1973). Though their results sometimes differ by 
more than the accuracy they claim, we have no other source for verification of the 
accuracy of the formulae to be derived here. 

The theory related to the new analytical approach is discussed in the next section. 
Some general approximate formulae are derived for the components of the tensor of 
magnetic polarisability which are valid for an aperture of arbitrary shape. The accuracy 
of the general formulae cannot be verified at the moment since there are neither 
experimental nor numerical data available. A significant simplification occurs when 
the aperture has at least one axis of symmetry: the tensor of magnetic polarisability 
becomes diagonal. Specific formulae for the evaluation of the coefficients of magnetic 
polarisability are derived for various aperture shapes and their accuracy proves to be 
quite satisfactory when compared with the numerical results available. The second 
part of the project will deal with the coefficients of electric polarisability. 

2. Theory 

It is well known (Bethe 1944) that the problem of diffraction by small apertures can 
be reduced to the solution of the following integral equation: 
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324 V I  Fabrikant 

where S is a two-dimensional domain of the aperture, R (  M,  N )  stands for the distance 
between the points M and N ,  w is a known function and a stands for the charge 
density (unknown function). 

Here we outline the analytical treatment of the problem which allows us to derive 
simple yet accurate formulae for various aperture shapes. The approach is based on 
the integral representation for the reciprocal distance established by Fabrikant (1971)  

where 

Since the derivation of ( 2 )  was published in Russian and is not easily accessible to 
the reader, we repeat this derivation in the appendix. Substitution of ( 2 )  into (1) gives, 
after changing the order of integration, 

Consider an  aperture S in a planar screen whose boundary is given in the polar 
coordinates as 

P = a ( 4 )  
where the function a ( 4 )  is bounded and single-valued. For the case of magnetic 
polarisability, it is sufficient to consider equation ( l ) ,  with the function w taking the form 

( 5 )  

where cy, and a ,  are constant. It is quite clear that in the case of a uniaxial excitation 
one of these constants can be put equal to zero. 

Let the charge distribution at the aperture be 

w = ffyy - f f , x  

where pI and p z  are as yet unknown constants. The main reason for this choice is the 
requirement that (6) be exact for an ellipse. We make use of the condition that the 
integral of U over S should be equal to zero. Since pl and p 2  are independent, this 
leads to two equations 

( ~ ( 4 ) ) '  COS 4 d 4  = O  

One can note that the left-hand side of each 
y coordinates of the centre of gravity. This 

{(:* ( a (  c $ ) ) ~  sin 4 d 4  = 0. (7 )  

equation ( 7 )  is proportional to the x or 
means that the origin of the system of 

coordinates should be located at the centre of gravity of the aperture. The axis 
orientation will be discussed later. 

The relationsips between the dipole moments and the parameters p ,  and p 2  can be 
established from the conditions 
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which leads to 

M ,  = ! ( P i J , b  +PzI,) M ,  =- : (PI& +PZI,,) (8) 

where I , ,  I ,  and I , ,  are the well known quantities of the moments of inertia and the 
product of inertia respectively: 

Now it is necessary to relate p ,  and p 2  to the parameters a, and ay. This can be done 
by substitution of ( 6 )  into (4) which yields, after integration with respect to po, 

Here F stands for the Gauss hypergeometric function. Further evaluation of the 
function w can be done separately for each harmonic. Note that the zeroth and all 
the even harmonics of w will be zero if a ( 4 )  contains only the even harmonics. The 
first harmonic will take the form 

W I ( P ,  4 )  = ; P  lo2* cos (4  -40NP1 cos 40+P' sin 4o)a(4o) d40 

which can be simplified as 

W l ( P ,  4 ) = h [ ( P l J l  +PZJ,Y)  cos d+(PIJ,, +PZJ,) sin 41 (10) 

where the following quantities were introduced: 

J ,  = Io** a ( 4 )  s i n 2 4  d 4  

J,, = jo2* a ( + )  sin 4 cos 4 d4. 

J ,  = Io2* a ( 4 )  cos' 4 d 4  

(11) 

These quantities d o  not seem to have been used before in engineering practice so they 
d o  not have an accepted name. Since their tensor properties are similar to those of 
the moments of inertia, we shall call J,  and J ,  the linear moments ofa two-dimensional 
domain about the axes Ox and Oy respectively, .I,, will be called the linear product of 
a two-dimensional domain about the axes Ox and Oy. 

It is important to note that the third harmonic is equal to zero for an  arbitrary 
contour. Here is the expression for the fifth harmonic 

which can be modified as 
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Here, the following geometrical characteristics of the aperture domain were introduced 

A‘, = 

sin 6 4  d 4  

Investigation of further harmonics shows that their amplitude decreases. 
Now consider in more detail the case of a square with side 21. The equation of 

the boundary in this case is a ( 4 )  = l/cos 4 for -7r/4< 4 < ~ / 4 ,  and the pattern is 
repeated outside this range. We can evaluate the first two non-zero harmonics: 

128p4 
94512 

w , = - ( ( p ,  c o s 5 4 + ( p 2 s i n 5 ~ ) .  

Since the amplitude of w5 is significantly less than that of wl, it seems natural to 
assume w = w l ,  and the remaining harmonics may be called the solution error. Direct 
computations show that the error is less than 3% inside the circle p s 1. The error is 
reasonably small outside the circle, reaching about 20% at the apex and decreasing 
very rapidly with distance from the apex. Taking into consideration that the error sign 
fluctuation will result in an  even smaller error in the integral characteristics sought, a 
direct comparison of ( 5 )  and (10) leads to 

The inversion of (14) gives 

2 J , Q , +  J,,a, p z = -  2 J , ,Q,+  J L Q ,  

’I =-; J J ,  - J f ,  T JJ , - J ’ , ,  ‘ 

Substitution of (15) in (8) finally gives the required relationship 

(15) 

where 

It is clear that all these results can be rewritten in a matrix or a tensor form. One can 
verify that formulae (16) are invariant with respect to an arbitrary rotation of the axes. 
The same property holds for m , ,  + mZ2 and m,, - M ~ ~ .  Strictly speaking, according to 
the reciprocal theorem, m 1 2  should equal m2,  , so that formulae (16) generally d o  not 
satisfy this theorem, but we may state that this theorem is satisfied ‘approximately’. 
We mean by this the following property which has been verified by several direct 
computations, namely lm12-  m 2 1 / / m , l < <  1 and ~ m I Z - m 2 1 1 / m 2 r < <  1. This theorem will 
be satisfied exactly for any domain which has at least one axis of symmetry because 
in this case m,,  = m z l  = 0 provided that the coordinate axes coincide with the central 
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principal axes of the domain of contact. Since we have no numerial data for non- 
symmetrical domains which could be used to verify the accuracy of (16), we shall 
consider further only the case when the aperture has an axis of symmetry. In this case 
formulae (8), (14) and (16) simplify significantly 

(17) M ,  = ! IxP2  ) 31,ZPl 

a, = f r J , p 2  a, = - f . n J , p ,  (18) 

M = - s  

Now, we can rewrite the expression for the charge distribution (6) in terms of the 
moments M, and M,, in the form 

An expression equivalent to (20) can be written in terms of the parameters a, and a,, 

Expressions (20) and (21) are exact for an  ellipse. We expect them to be reasonably 
accurate in the neighbourhood of the coordinate origin for an arbitrary aperture with 
at least one axis of symmetry, while the error might become quite significant close to 
the boundary of the domain S. 

Let us rewrite formulae (19) in the form 

when A is the aperture area, and 

321,, 
v,. = - 

3A3l2 J,. ' 
3 2 I., v, = ___ 

3 A 3/2 J,  

We introduced the coefficients v, and v, for two reasons: since they are dimensionless 
they characterise the shape of S and d o  not depend on its size; both v, and v, are 
equal to the corresponding coefficients of magnetic polarisability which will simplify 
the comparison of our results with the numerical data available. The remaining part 
of this paper will be devoted to the evaluation of the coefficients v, and v, for various 
aperture shapes. 

3. Applications 

Several specific aperture shapes are considered here. Each configuration is related to 
its central principal axes and  assumed to have at least one axis of symmetry coinciding 
with the axis Ox. A high degree of accuracy of formulae (23) is confirmed by comparison 
with available numerical solutions. 



328 V I  Fabrikant 

3.1. Polygon 

Consider a polygon with n sides. The function a ( 4 )  describing its boundary is bounded 
and single-valued. The origin of the coordinate system is located at the centre of 
gravity, as before. Let us number the polygon sides in a counterclockwise direction 
from 1 to n, ah being the length of the kth side. The apex, at which the sides a, and 
a h + l  are intersecting, is numbered k + 1 .  I t  is clear that the value of index equal n + 1 
is understood as 1. Denote by bk the distance from the centre of gravity to the kth 
apex; +k stands for the angle between the axis Ox and the perpendicular to the side 
ak. Let Ak be the area of the triangle formed by f f k ,  bk and b k + l r  the total area A of 
the polygon being equal to the sum of Ak.  The following expressions can be obtained 
for the moments of inertia: 

where 

Formulae (24 )  and (25 )  are valid for an arbitrary polygon, not necessarily having an 
axis of symmetry. The principal moments of inertia Zxc and Zyc and the principal axes 
orientation angle +, can be computed due to the well known formulae (see D’Souza 
and Garg 1984) 

where 

I ,  - I ,  -- -- - c - (mk  - h k )  cos 2Gk +gk sin 241~. 
2 k = l  

- hh 
1, + 1, 

2 k = l  

The linear moments can be computed in the form 
n 

J ,  = 1 - q k  COS 2$k + sk S i n  2 4 k  -I- 21, COS’ $A 
h = l  

where 
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Substitution of (24)-(27) into (23) gives the coefficients v, and v, for an arbitrary 
polygon. In the case of a regular polygon ah = a ,  b,, = b = a/[2 s in(n/n)] ,  t+bk = 
2 n ( k -  l ) / n ,  Ah = [ a 2  c o t ( n / n ) ] / 4 = [ b 2  s in(2n/n)] /2 ,  A =  nAk and formulae (24)- 
(27) simplify to 

na4 r( ; i) -nb4 277( 2nrr) 
6 4 n  24 n 

  cot- cot2-+- =-sin- 2+cos- 

(29) 
n l + s i n ( n / n )  n l + s i n ( r / n )  
n l - s i n ( n / n )  n 1 -sin( T /  n)‘  Jy = = ana cot - In = Inb cos - In 

Substituting (28) and (29) in (23) leads to 

1 +sin( n / n )  
1 - sin( n/ n )  

vr = v? = 16[2+cos(2n/n)] 9[n3 sin(.rr/n) cos3(n/n)]”’ In 

Consider several particular values of n. For an equilateral triangle ( n  = 3) formula 
(30) gives v, = v, = 31’416/[27 ln(2+&)] = 0.5922. We did not find any numerical data 
to compare with this result. In the case of a square n = 4, and vA = v,, = 4/[9 In( 1 +a)] = 
0.5043 which is inside the interval from 0.4973 to 0.5162 given by Okon and Harrington 
(1981) and within 3% from the result of de  Smedt, 0.5193. Since formula (30) in the 
limiting case n +CO gives the exact result for a circle v, = v, = 8 / ( 3 r r 3 ” )  = 0.4789, we 
should expect that the error of (30) will decrease with n. The value of the coefficients 
for a regular hexagon is v, = v, = 40d/(31’481 In 3) = 0.4830 which differs by 1.4% 
from the result 0.49 due to Okon and Harrington (1981), and it is quite clear that the 
maximum possible error indeed decreases with n. It is noteworthy that the coefficients 
of magnetic polarisability do  not change significantly in the whole range 3 d n <cy). 

3.2. Isosceles triangle 

In the case of a triangle with the sides a l  = a2 = 1 and the angle between them equal 
to a formulae (23)-(27) give 

I ,  = hi4 sin a sinZ(a/2)  I? = & 1 4  sin a c0s2(a/2)  

+ 2 sin3 5 in (cot cot E) + In tan (:+:)I 
2 4 

J,, =-  1 cos - -sin a -s in(a  + y ) + 2  sin y+sin a 
3 2 2 4 

with the result for the coefficients 

v, = g(tan(c~/2))~’’ sin (Y +sin(a  + y )  -2  sin y 

- I  

+ 2 sin3 5 in (cot cot E) +In  tan ($+:)I} 
2 4 
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U,. = 8(cot( a/2))"* 9 -sin a -sin( a + y )  + 2 sin y { [  
- 1  

+sin a cos 2 In (cot 2y-(Y Cot c)]} 
2 4 4 

where y = tan-'(3 tan(a/2)) .  
The isosceles right triangle was considered by Okon and Harrington (1981) who 

gave the interval between 0.9829 and 1.021 for only one coefficient which in our notation 
is v,. Our result for v, is 0.9255 which differs by less than 1O0/o from theirs. The 
second formula (31) gives v,, = 0.3995 and there is nothing in the literature to compare 
with this result. 

3.3. Rectangle 

Consider a rectangular aperture, U ,  and a, being its semiaxes. Introduce the aspect 
ratio e = a 2 / a , .  Formulae (24)-(27) in this case reduce to 

I ,  = + a 3 0  3 1 2  I =+a  0 3  

J, = 4a1 sinh-' e 
Y 3 1 2  

J, = 4a2 sinh-'( 1 / e )  

and formulae (23) yield 
4&3/' 4&-3/2 

Y ,  = U, = 
9 sinh-' E 9 sinh-'( l / e ) '  

We have found in the literature some numerical results which seem to be more or less 
accurate. The coefficients of magnetic polarisability were computed by de Smedt (1979) 
for a rectangle with different aspect ratio E. We present his results along with those 
given by (32) in table 1. 

Table 1. 

E 0.1000 0.2000 0.3333 0.5000 0.7500 0.8000 1.0000 

de Smedt v, 0.1287 0.1881 0.2531 0.3249 0.4240 0.4436 0.5193 
Formula (32) v, 0.1408 0.2001 0.2612 0.3265 0.4165 0.4341 0.5043 
de Smedt Y, 4.1070 2.0260 1.2600 0.8892 0.6426 0.6130 0.5193 
Formula (32) v, 4.6876 2.1488 1.2701 0.8708 0.6228 0.5929 0.5043 
Discrepancy in U ,  ( %  ) -9.4 -6.4 -3.2 -0.5 1.8 2.2 2.9 
Discrepancy in U ,  ('7') -14.1 -6.1 -0.8 2.1 3.1 3.3 2.9 

Our formula (32) seems to perform satisfactorily in a sufficiently wide range of 
aspect ratio. The approximate expression for the charge distribution at the aperture, 
according to (201, takes the form 

The results due to (33) can be compared with the numerical data received in a personal 
communication from de Smedt. In order to make the comparison possible, one should 
put in  (33) M ,  = 0, replace M ,  by (22), with the result 

9&a( 4 ) Y , X  

4a ,  [ a2(  q5) - p ' ]  ' ' 2 '  
U =  (34) 
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Computations due to (34) were made for E = 0.5 along the axis Ox, the value vy was 
taken as 0.8708 (see table 1). The results compared to those communicated by de 
Smedt are shown in table 2. 

One should expect the error of (34) to be monotonic (or to have one extremum). 
This expectation is not met around x / a ,  = 0.5 and x / a ,  = 0.9 which most probably 
indicates some computational inaccuracies in the data by de Smedt. This is why we 
are using the word discrepancy rather than the word error in the tables throughout the 
paper. The situation becomes even more evident if we compare the same values along 
the axis Oy. One can use a formula similar to (34) replacing all x and y and 
interchanging a ,  and a,, the value of v, was taken to be 0.3265. Changing sign in the 
discrepancy indicates some ‘noise’ in the numerical solution by de Smedt. 

3.4. Rhombus 

Let cy be the angle at one of the rhombus apexes and 1 be its side. Formulae (24)-(27) 
in this case yield 

A = I’ sin cy 
2 1  I ,  = AI4 sin cy cos- -a 1 4  2 1  I ,  = g 1  sin cy sin ?a 

cos(a/2)+sin(a/2)+ 1 
cos( a / 2 )  + sin( a/2) - 1 

J, = 21 sin a cos fa - sin +a +sin2 ;CY In 

cos(a/2)+sin(a/2)+ 1 
cos( a / 2 )  + sin( a / 2 )  - 1 

( 
-cos fa +sin fa +cos2 fa In 

The coefficients will be defined as 

cos(a/2) +sin(a/2)  + 1 -’ 
cos( a /2 )  + sin( a /2 )  - 1 

I- ( 3 5 )  
11 cos $a -sin fa + sin’ +a In 

cos( a / 2 )  + sin( a/2) + 1 
cos(a/2)+sin(a/2)-1 11 +cos2 $a In 

Table 2. 

x l a ,  0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 0.9167 
d e  Smedt U 0.1143 0.2303 0.3501 0.4759 0.6093 0.7523 0.9367 1.1460 1.4304 1.8303 2.8182 
Formula (34 )  U 0.1159 0.2342 0.3577 0.4898 0.6350 0.7999 0.9950 1.2392 1.5709 2.0886 3.1777 
Discrepancy (‘10) -1.3 -1.7 -2.2 -2.9 -4.2 -6.3 -6.2 -8.1 -9.8 -14.1 -12.8 

Table 3. 

L’!a2 0.1667 0.3333 0.5000 0.6667 0.8333 
de Smedt e 0.1756 0.3663 0.601 1 0.9014 1.6413 

0.3673 0.5998 0.9292 1.5662 Our result U 0.1756 
Discrepancy ( %  ) 0.0 -0.3 0.2 -3.1 4.6 
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The same formulae in terms of the rhombus semiaxes a and b and the aspect ratio 
E = b / a  has the form 

E -  , 
(1 + E * ) l ’ 2  1 + E - ( 1 + & * ) ” 2  

1 + E  + ( 1  + & y ) ] - I  

1 + E + ( 1  + & 2 ) 1 ’ * ) ]  - 1  

In 

( 3 6 )  
1 
E 2 ) 1,2’n l + e - ( 1 + E 2 ) 1 ’ 2  

The coefficients of magnetic polarisability of a diamond were computed by de Smedt 
(1979). We present his results in table 4 compared to those given by formula ( 3 6 ) .  

The deterioriation of the accuracy of ( 3 6 )  for small values of E is the result of the 
erroneous assumption of a square root singularity in ( 6 )  which is grossly incorrect for 
domains with sharp angles. 

Table 4. 

E 0.1000 0.2000 0.3333 0.5000 

de Smedt U, 0.1181 0.1729 0.2341 0.3052 
Formula (36)  v, 0.1078 0.1627 0.2258 0.2986 
de Smedt v! 6.1820 2.7060 1.5240 0.9946 
Formula (36) v, 4.5987 2.1982 1.3254 0.9095 

Discrepancy of U, (“10)  25.6 18.8 13.0 8.6 
Discrepancy of v, (YO) 8.7 5.9 3.6 2.2 

~ 

07500 08000 10000 

0.4101 0.4323 0.5193 
0.4026 0.4230 0.5043 
0.6703 0.6323 0.5193 
0.6388 0.6052 0.5043 
1.8 2.1 2.9 
4.7 4.3 2.9 

3.5. Circular segment 

Let the radius r and the angle 2a be the segment parameters. The location of its centre 
of gravity is defined by x, = kr, where 

2 sin3 a 
3 ( a  - i s i n 2 a ) ’  

k =  ( 3 7 )  

The equation of the segment boundary with respect to its centre of gravity takes 
the form 

r[-k cos 4+(1 - k2 sin’ 4)”‘] for 0s 4 s  7 -  y or x +  y~ 4 < 2 x  

for x - y s 6 s x + y. k-CO5 a (38) a ( 4 )  
cos( 57 - 4 )  

Computation of the moments yields 

A = ?(a - i s i n  2 a )  

J ,  = $ r [ -k sin3 y +  ( 1  - k’ sin’ y ) ” ?  sin y cos y+- F ( x -  y, k )  

I, = aAr’( 1 - k cos a )  I, = aAr’( 1 + 3 k  cos a - 4k’) 

1-k’ 
k- 

E ( x -  y, k)+3(k -cos  a )  
2k2-1  +- 

k’ 
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I 1  

I ’  I , 
\, ‘ 
‘ ? , I  1 

~ I \ i ’ ’ 

I ’  I 

! I 
I ~1 

i 1 
I 

I 

‘ 1 1 1 ’ 4  

1 1 ’ 1 1 1  
1 
‘ I  

I , !  

_ _ _ _  ____..----- ---- 
I ,  1 ’ l l / I  

sin y[ k sin‘ y - 3 cos a - ( 1 - k’ sin’ y)”’ cos y] 
“ 3  

1-k’ 1 + k ‘  
k2 k’ 

F (  7~ - y, k )  +- -- 

where y = tan-’(sin a / ( k  -cos a ) ) .  Substituting in (23)  leads to 
1-k’ 

-k sin3 y + (1  - k’ sin’ y)”’ sin y cos y +- F(.rr - Y, k )  k2 
4 ( 1 -  k COS C U )  

ux = 
( a  --; sin 2 a ) ” ’  

E ( . r r - y , k ) + 3 ( k - c o s a )  - s i n y + I n t a n  -+- 2 k 2 - 1  +- 
(39 )  

c (: ;)I}-’ k’ 

sin y[ k sin2 y - 3 cos a - (1 - k’ sin’ y)Il2 cos y] 
4 ( 1 + 3 k  COS a -4k2)  

( a  - i s in2a )” ’  
vy = 

-1 1 - k 2  1 + k 2  
k’ k2 

F (  7~ - y, k)  + - -- 

A plot of U, (full curve) and  U, (broken curve) against the ratio a/.rr is given in figure 
1. We are unaware of any data to verify the accuracy of (39). 

3.6. Circular sector 

A repetition of the procedure, described in P 3.5, leads to the following results for a 
circular sector with the angle 2 a :  

A = r’a 
9a2+9a sin a cos a - 16 sin2 CY 

36a 
I = I  4 r  4 ( a - i s i n 2 a )  I ,  = r4  

1 - k 2  2k’- 1 -k sin3 y - ( 1  - k’ sin‘ y)“’ sin y cos y +- F ( y ,  k ) + F  E(y ,  k )  
k- 

cos a +cos (a  + y)  +sin2 a In 

(40) 
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-cos a -cos( a + y )  + cos‘ a In 

Here, k = 2 sin a / ( 3 a )  and y = tan-‘[sin a / ( c o s  a - k)]. The coefficients sought are 
expressed as follows: 

u , = 2 ( ~ - ~ ’ ~ ( 2 a - - s i n 2 a )  -ks in3  y- ( l -k’s in’y) ’ ’ ’  sin y cos y 

2k’- 1 
E(Y, k )  

1-k’ 
k? +- F(Y, k ) + k ’  

cos a +cos(a  + y )  +sin‘ 0 In 
(41 

k sin y(sin’ y - 3)  4(9a’+9a sin a cos a - 16 sin’.) 
9a5I2 

U, = 

1 - k ’  1+k’  + ( 1  - k’ sin’ y ) ’ ” s in  y cos y -- F ( Y ,  k ) + k ‘  E(Y, k )  k2  

-cos a - cos(a + y )  + cos’ a In 

Formulae (41) are exact for a complete circle ( a  = T ) ,  and give the same results as 
(39)  for a half-circle ( a  = ~ / 2 ) .  The plot of v, (full curve) and U, (broken curve) 
against the ratio a / ~  is given in figure 2. We did not find anything in the literature 
to compare with these results. 

3.7. Cross 

Consider an aperture obtained by an orthogonal intersection of two equal rectangles 
with sides 2a and 26. Introduce the aspect ratio as E = b/a.  The area and the moments 
will take the form 

A = ~ u ’ E ( ~ - E )  [ = I = $  , , 3a € ( l + E ’ - & ? )  

’ 20\\ 
1 0 0  

I 

0 80 
r‘. 
r‘ 0 60 

0 40 

0 0.2 0.4 0.6 0.8 1 .o 
a h  

Figure 2. Coefficients of magnetic polarisability for circular sector 
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The coefficients will be defined as 

v, = v,. = 4&(  1 + E ’ -  E ~ )  ( I n [ & + ( 1 + & 2 ) ” 2 ] + &  In 
9 4 2  - E ) ~ ’ ~  

The comparison between the results due to (42) and those given by de  Smedt (1979) 
are presented in table 5. Taking into consideration the shape complexity, we should 
consider the agreement of these results as surprisingly good, not only quantitatively 
but qualitatively as well: both data display a relatively flat minimum around E = 0.75. 

Table 5. 

E 0.1000 0.2000 0.3333 0.4000 0.5000 0.6000 0.7500 0.8000 1.0000 

de Smedt U ,  = U )  1.5910 0.8720 0.6255 0.5725 0.5267 0.5069 0.4985 0.4997 0.5193 
Formula (42) vx = v, 1.7382 0.8758 0.6006 0.5465 0.5049 0.4890 0.4893 0.4926 0.5043 
Discrepancy (YO ) -9.3 -0.4 4.0 4.5 4.1 3.5 1.9 1.4 2.9 

4. Discussion 

It is noteworthy that the change of the order of integration which led to (4) is valid 
inside the circle p s m i n ( a ( 4 ) )  only, and this explains the accuracy deterioration for 
the aspect ratio far away from unity. Nevertheless, one can obtain from (4) the exact 
solution for an ellipse and sufficiently accurate formulae for various specific apertures 
as was demonstrated in the previous section. 

The accuracy of formulae (23) can be improved by taking into consideration the 
fifth harmonic (12) in combination with the variational approach (Noble 1960). The 
following functional assumes its maximum value at the exact solution of (1): 

Taking 

and substituting (61, ( lo) ,  (12) and (44) in (431, one gets after integration with respect 
to P 

-f.ir(plJ, +PJ,,) cos 4 -f . ir(p,~, ,  +PJ,) sin 4 
- & ( a ( &  1 13([ Pl(A‘,+ 4 4 )  + PAA,, - Ay4)1 cos 54 
+ [ p I ( A r 6 +  4 4 )  +pz (A, ,  - Ar6)1 sin 54)H d&. 

a l l a p ,  = o a i / a p ,  = o 

(45) 
Considering now the functional I as a function of p ,  and p 2 ,  the extremum conditions 

give two linear algebraic equations with respect to the unknowns p ,  and p z .  The 
complete solution is pretty cumbersome. Here, we present the final result for the 
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coefficients U ,  and vy which are valid only for domains having at least one axis of 
symmetry and the central principal axes taken as the coordinate axes: 

321, 321, 
U ,  = U ,  = 

3A3’2J,( 1 + vX) 3A3”J, (1 + 7,) 
where the correction terms 

(47) (Bc4-Bch)(Ac4-A<6) ( 4 4  + Bc6)(Ac4 + 4 6 )  

42 TI, J ,  7)’ = 42nI,Jx r l x  = 

and 

Bc6= (a(4))’cos 6 4  d 4  (a (4) ) ’  COS 4 4  d 4 ,  

Since expression (44) is approximate, there is no guarantee that (46) will be more 
accurate than (23). We performed the necessary computations for a rectangle. In table 
6 the results are compared to those by de Smedt (1979). 

Comparison with similar data computed on the basis of formula (32) shows that 
the correction terms 7, and 77,. in this particular case resulted in decreasing of the 
value of discrepancy, positive as well as negative. We caution again that there is no 
guarantee that this will be valid for an arbitrary domain. For example, in table 7 the 
data are computed for a rhombus. 

Table 6. 

E 

de Smedt v, 
Formula (46) v, 
de Smedt U! 
Formula (46) v, 
Discrepancy in v, (Yo 
Discrepancy in Y, (YO) 

0.1000 0.2000 0.3333 0.5000 0.7500 0.8000 1.0000 

0.1287 0.1881 0.2531 0.3249 0.4240 0.4436 0.5193 
0.1405 0.1988 0.2577 0.3207 0.4165 0.4376 0.5331 
4.1070 2.0260 1.2600 0.8892 0.6426 0.6130 0.5193 
4.5856 2.0985 1.2479 0.8714 0.6463 0.6190 0.5331 

- 9.2 -5.7 -1.8 1.3 1.8 1.3 -2.7 
-11.7 -3.6 1 .O 2.0 -0.6 -1.0 -2.1 

Table 1. 

E 0.1000 0.2000 0.3333 0.5000 0.7500 0.8000 1.0000 

de Smedt v, 0.1181 0.1729 0.2341 0.3052 0.4101 0.4323 0.5193 
Formula (46) U, 0.2268 0.1860 0.2351 0.3031 0.4058 0.4264 0.5091 
de Smedt v, 6.1820 2.7060 1.5240 0.9946 0.6703 0.6323 0.5193 
Formula (46) v )  8.5600 2.5916 1.4196 0.9408 0.6490 0.6138 0.5091 
Discrepancy of v, (‘10) -92.0 -7.6 -0.4 0.7 1 .O 1.4 2.0 
Discrepancy of Y, (%) -38.5 4.2 6.8 5.4 3.2 2.9 2.0 

Comparison with the data computed due to (36) indicates that the discrepancy 
decreased for E 3 0.2 while for E = 0.1 it has jumped in the opposite direction to -92%. 
The main reason for this is a jump in the value of the coefficients 7, and qv when E 

is very small. The following rule of thumb may be suggested for the user wishing to 
improve the accuracy: when the value of the correction coefficients qx and v,, does 
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not exceed a small percentage of unity this generally means an improvement in accuracy, 
otherwise one should not use formulae (46). 

It is worthwhile giving the solution due to (45) for the case when the aperture has 
no axis of symmetry and only the first harmonic of w ,  is taken into consideration. The 
result is 

where 

C I I  = t d J J ,  + J J r ,  1 
c 1 2 = $ . r r [ J x , ( ~ x + ~ , ) + ~ x , ( J x + J , ) 1 .  

c22 = tdJJ, + J J X ,  1 

Formulae (48) look different from the equivalent set (15) derived earlier. In the absence 
of any numerical data related to a general domain, it is impossible to say whether 
formulae (48) are more accurate than (19, but they are definitely more complicated. 
It is noteworthy that in the case of a domain with an axis of symmetry both (48) and 
(15) simplify to the same equations (18). 

5. Conclusion 

Formulae ( 2 2 )  and (23)  proved simple and effective for evaluating the coefficients of 
magnetic polarisability of small apertures having at least one axis of symmetry. Their 
high accuracy is confirmed by numerous examples. Though the accuracy deteriorates 
for domains with sharp angles and the aspect ratio far away from unity, we believe 
that the method presented in this paper will provide a useful tool easily accessible to 
a practical engineer. The computation of the coefficient of electrical polarisability will 
be considered in the second part of this project. Results of this paper are useful for 
the solution of mathematically similar problems in the other branches of engineering 
science (Fluid and Solid Mechanics, Acoustics, Heat Transfer, etc). 
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Appendix 

Here we repeat the derivation leading to the integral representation for the reciprocal 
distance ( 2 ) ,  as was given in Fabrikant (1971). Consider the expression 

1 1 

where U is a constant and -1 C U < 1. The standard expansion of (A I )  in Fourier 
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series will take the form 
1 

( I + u ) / 2  [P2+P:-2PP0cos(4 -4o)l 

Here F stands for the Gauss hypergeometric function. By using another integral 
representation 

, n +-, n + 1 ;  z 
2 

expression (A2) can be transformed into 

d x  2 TU oc exp[in(+ - 40)]  ~ o m i n ( p o ~ p )  X 2 n + u  

-cos- c 2 ( I + U ) / 2 '  
7~ 2 n = - c c  (ppo)" NP2-X2)(P:-x )I  
Summation in (A3) finally gives 

1 
[p2+p;-2pp0 cos(4 - 40)]('+u)'2 

2 W l P P o ,  4 - 4 O ) X U  d x  
Tr 

In the particular case U = O  formula (A4) gives the required representation (2). 
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